冯教授究竟多厉害?
他证明了什么猜想、奠定了怎样的理论基础,最终取得过怎样的成?就,又是怎样被评价的?
林朝夕很想知道这些。
往后那几天,林朝夕依旧保持白天上课、傍晚集训、晚上到陈竹家写程序、深夜给老林做监工的节奏。
空闲时,她会开始根据“冯德明”的百度百科中他的个人学术成就,开始一个个搜索那些她之前完全没有听过的名词。
某某流形的度量空间结构、标度理论及其分形几何……那些名词之后又是许多艰深论文,完全像是另一个空间的内容。
而七年前的相关的学术性论坛发?展远不及后来,很多时候她也根本搜不到某某理论和某某猜想意味着什么,只能大体了解它们是什么分支下的内容。
所以她没把这些事当成?正经的工作,而是在累了的时候,她才会开始休闲性质的查看,更像是在八卦、一种漫无目的地学术性八卦。
冯教授成?就斐然、极受尊重,无?论学术会议或者在永川大学论坛,学生们对他都是真心敬服。
声誉如滔天巨浪,有时令人喘不过气,好像就算她把老林未完成?的内容全部带回现实,和冯教授所取得的成?就比,也如同萤火之光与皓月。
林朝夕只能宽慰自己,这也没关系,老林的目标,从来也不是他。
在这段漫长的日子里,裴之偶尔晚上会陪着她。经过三个礼拜,林朝夕确认,这个“偶尔”特指周三晚上和周六。
周三他们一起去陈竹家上网,裴之也会用一会儿电脑,到晚上十点钟,裴之会送她回家,然后一个人离开。
周六则是老林的补习班,林朝夕上午给小学生们上完奥数课,就开始跟他们俩学一点图论相关的内容。
而在这样看似平淡如水、但林朝夕却日渐焦虑的日子里,老林的证明工作?取得了真正的进展。
虽然,所谓的进展是指林朝夕终于等到老林出错那页草稿。
那是在初秋的某一个周六,当时她站在讲台前,和往常一样,她悄悄给老林看了几十页草稿,满脑子都是V(G)和V(H)以及集合数学符号。
黑板上时是她刚画下的七桥模型,数百年前由欧拉做出划时代证明的内容,现在却完全可以讲给小学生们听。
“其实当时欧拉先生?进行证明的方式非常简单,他将岛化为顶点,将连接陆地的桥表示为线,那么我画的这个地图,会变成?一个更加简单的图案。”
林朝夕像模像样地画了一个类似于甜筒的形状。
“好像是简单多了。”
“但真的不可能一次走下来吗?”
小朋友们的提问声又想起。
启发到这里就差不多了,林朝夕说:“你们可以试试看啊?”
“怎么试呀?”
“画一画,从起点出发,通过每座桥,再回到起点的路线,看能不能找到那条路~”粉笔在顶点和线上划动。
“或者运用数学方式证明,这不可能。”很有志气的小男孩插嘴道。
林朝夕点头。
她话音未落,很多学生开始自顾自讨论起来。有人决定一个个试试,有人想找简单的、数学的方法,林朝夕没有再说什么。
她下去转了两圈,回答了几个问题,然后被小朋友们赶回自己位置上。
她只能又拿出刚悄悄“偷”来的草稿,随意看了起来。
秋风拂过,窗外的树叶落下一些,酥脆金黄。
林朝夕一页页翻过早上已经看过一遍的草稿,她总觉得老林曾经出错的问题应该在里面,已经很接近了,却又没有找到。
在这期间,因为有一组决定要分工合作?数清楚总计有多少种走法的学生就该如何工作发?生?小规模争吵,林朝夕跑下去给他们出了个主意。